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1. OBJECTIVES

The purpose of this research project is to refine the current

notion of system reliability by identifying and investigating attributes

of a system which are important to reliability considerations and to

develop techniques which facilitate analysis of system reliability.

Attributes selected for investigation included:

(a) Fault tolerance - the ability to maintain error-free input-

output behavior in the presence of (temporary and/or

permanent) faults in the system

(b) Diagnosability - the ability to detect and locate faults in the

system

(c) Reconfigurability - the ability to reconfigure the system after

the occurrence of a fault so as to realize the original behavior

or some other (possibly less complex) behavior

with the following proposed objectives:

I. To determine, relative to the above attributes, properties

of system structure that are conducive to a particular attribute.

Structures so considered will range from state -transition functions at

one extreme to hardware and software realizations at the other extreme.

II. To determine methods for obtaining reliable realizations of

a given system behavior. In particular, one would like to obtain reali-

zations which are fault tolerant (relative to the specified behavior) and
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yet diagnosable (relative to some extended behavior).

III. To determine how properties of system behavior relate to

the complexity of fault tolerant (diagnosable, reconfigurable) realiza-

tions. Once such relationships are discovered, the inherent fault

tolerance (diagnosability, reconfigurability) of a given behavior could

be measured by the minimum complexity of realizations possessing

that reliability attribute.

IV. To determine methods for evaluating the reliability of a

proposed or existing system as measured in terms of fault tolerance,

diagnosability, reconfigurability, or combinations of these attributes.

This includes the investigation of appropriate reliability measures,

modeling techniques, and computational methods for determining, or

at least estimating, system reliability.

Since the initiation of the grant, the above proposed objectives

have been augmented to obtain a more definitive statement of what

research should be accomplished to meet the needs of NASA and,

in particular, the Langley Research Center. The following statements

of these augmented objectives are due primarily to the constructive

suggestions of NASA-Langley, with some subsequent modification in

wording to conform more closely with our interpretation;

I. To develop formal concepts and establish mathematical results

which can be used to precisely define measures of system utility, e. g.:

1. Measures of fault tolerance;

2. Measures of recoverability based on measures of detectability,
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locatability and reconfigurability;

3. Measures of system availability with respect to different

levels of system performance;

4. Measures of total system "worth" based on measures of

performance worth and measures of performance availability.

II. To develop analytic and simulation methods for evaluating

system utility measures.

III. To determine architectural characteristics of fault-tolerant

systems that are amenable to fault detection and fault location.

IV. To investigate methods of on-line diagnosis that are appli-

cable to specific subsystems of a fault-tolerant computing system, e. g.

-given an arithmetic unit subject to a specified class of faults,

design a detector that, with a specified allowable time delay,

will detect any error produced by a fault.

V. To investigate methods of augmenting the structure of

specific hardware or software subsystems in order to facilitate detector

design and improve on-line diagnosability.

2. PERSONNEL

To meet the objectives stated in Section 1, it was estimated that

the following technical effort would be required:

Principal Investigator
25 percent time, academic year
100 percent time, two months, summer
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Research Assistants
1 at 50 percent time, academic year
2 at 25 percent time, academic year
3 at 100 percent time, summer

Programmer
25 percent time, fiscal year

During the period 1 January-30 June 1974 (referred to as the "reporting

period") research personnel and their level of effort have been:

Principal Investigator
John F. Meyer
25 percent time, January - May
100 percent time, June

Research Assistants
David E. Frisque
20 percent time, January - April
100 percent time, May - June

Carolyn P. Steinhaus
13 percent time, February - April
100 percent time, May - June

Robert J. Sundstrom
54 percent time, January - April
100 percent time, May - June

3. TECHNICAL STATUS

In proposing the research activity to be conducted under the

subject grant, several specific investigations were proposed for con-

sideration during the year. Of the proposed investigations, the two

focused on during the reporting period were:

(1) Reliability Analysis - Determine appropriate measures of

system reliability that can be evaluated relative to some specified

level of structural description, with initial emphasis on the architectural

level; develop models for reliability analysis, with respect to the above
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measures; and develop simulation models and computational methods

for evaluating these measures. What we eventually seek are programmed

reliability evaluation procedures that can be used interactively, during

the process of system design, to compare the reliability of various

design alternatives. Such procedures could also be used to compare

the reliability of various existing systems. The evaluation procedures

should be general enough to accommodate new schemes for reliability

enhancement, in addition to well-known techniques. This is to be

contrasted with CARE [ 1 ], for example, which was designed specifically

for the evaluation of modular redundancy and standby -sparing schemes.

(2) On-line Fault Diagnosis - Determine structural and

behavioral properties of systems that are conducive to their "on-line"

diagnosis; investigate techniques (other than duplication) for implement-

ing on-line diagnosis; and determine methods for altering the design

of a system to improve its on-line diagnosability. As contrasted with

"off-line" diagnosis, an on-line diagnostic procedure must contend

with (i) system input over which it has no control and (ii) faults that

occur as the system is being diagnosed. To account for these compli-

cating factors, the study will be based on a representation of faulty

digital systems as "resettable discrete-time systems, " first intro-

duced in [2].
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3. 1 Reliability Analysis

3. 1. 1 Background. A review of the current state of the art of

reliability analysis reveals a situation common to relatively new fields,

namely, the tendency to hold on to concepts and methodologies that were

introduced when the field first began to develop. Early objects of reliability

analysis were simple systems, at least in a functional sense, and simple

measures could be used to determine their reliability. In a period of 30

years, however, system complexities have grown to that of a large

multiprocessing computer or a complex operating system, while reli-

ability measures have remained almost as simple as they were when

applied to a radio receiver. Of course, the measures are now much

more difficult to evaluate and.consequently, in the area of computer

reliability analysis,much of the recent research effort has focused on the

derivation of formulae for calculating the values of traditional reliability

measures such as "probability of success. " This is not to deny the

importance of "probability of success" as a measure; indeed, when the

term "reliability" is narrowly interpreted it is usually given this mean-

ing. However, in the analysis of systems with complex behavior, what

constitutes "success" or "failure" can likewise be very complicated.

It is this fact that is often overlooked when complex systems are analyzed

using relatively simple reliability measures.

For example, a paper by Bouricious, et al. [3] presents the

following formula for the reliability of a stand-by sparing configuration

with N active units and S unpowered spares:
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R -N t (k 1--N ) Ck(l - e )k
k=O

where each active unit is assumed to have an exponential failure rate X,

and each spare has an exponential failure rate p. C is the coverage.

Although the failure criterion for this model was not stated, our analysis

indicates that they assumed that all N active units must be functioning,

and if a single active unit fails after the replacements have been

exhausted, the entire system fails.

Mathur did a similar type of analysis [ 4] using less stringent

failure criteria. He defines a hybrid system to be one which behaves

as a simple NMR core after all of the spares. have been depleted, so

that the system fails only when there remain less than (N + 1)/2

unfailed modules. Mathur's equation for the reliability of this configura-

tion is, for S > 1

-Nt -Spt Nk + S tl +1Rhybrid = e NX [ 1 + 2 (S +S) (ep - I)j+l
j=o -0

N N Nk+S + {(eSIteXt - 1) - (k +

i-0-0( S) j=0 + 1iO £O( S jO

(e t - 1)j+1l

where k = X/g.



Clearly, considerable effort has gone into reliability analyses

of this type. In fact, most of the combinatorial problems seem to have

been solved, and in general, papers. published in the last three years

have essentially been restatements of previous results, with some

minor modifications at best. Also, in the reliability analysis of both

computer hardware and computer software, there has been a tendency

in the past to blur the distinction between faults and errors, and to

treat all faults identically, ignoring the fact that different classes of

faults may have very different effects on system behavior. As a

consequence, reliability computations that are based on such analysis

methods may be quite misleading. Moreover, depending on the system

being analyzed, the computations might be optimistic in one case and'

pessimistic in another. What is needed, then, is a more refined

analysis model wherein the concepts of "fault" and "error" are

distinguished, and wherein the internal "state" of a system can be

accounted for when determining whether a fault causes an error.

The problems reviewed here are not presented as particular

difficulties which this research effort intends to solve, but rather as

examples of the type of problem which results from the fact that

reliability analysis, as afield, has yet to agree on what concepts

are central to the evaluation of the reliability of complex systems and, of

course, how such concepts shouldbe precisely formulated. It is the

feeling of this research effort that a more comprehensive

investigation of basic reliability concepts is necessary before
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further meaningful work can be done at a more detailed

level.

3. 1. 2 Computers with Faults. To establish a more refined

analysis model of the type suggested above, let us begin by viewing a

digital computer as a rather general type of system which, at discrete

points in time, receives input data which, in turn, effects changes in

the system's internal state. It will be assumed that the state set is

"coordinatized" where a subset of the coordinates represent the values

of those state variables that are observable as output variables. The

transition structure of such a system may vary with time because faults

occur or because the system is reconfigured in an attempt to recover

from a fault. At a given instant of time the structure is fixed, however,

and is described by a transition function which determines the state of

the computing system at time i + 1, given the state at time i and the

input received at time i. Formalizing this notion we have:

Definition: A (formal) computer is a system

C = (X,Q,A)

where

X is a nonempty set, the input set of C,

Q is a nonempty set, the state set of C,

A is a sequence of functions

A = (60,616 2...)
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where 6.: Q x X -- Q, the transition function of C at time i
1

(i = 0, 1, 2,...).

Thus a computer, as defined above, is a discrete-time, time-

varying system whose structure at time i is described by transition

function 6. (i = 0, 1, 2,...). In particular, if q e Q is the state of C at
1

time i and a E X is the input received at time i then 5. (q, a) is the

state of C at time i + 1. In case structure does not vary with time,

that is,

6.i+ = 6., i =0,1,2,... (3.1)

then C is time -invariant. Thus if C = (X, Q, A) is time -invariant,

A is uniquely determined by 50 and C can alternatively be regarded

as a (state) sequential machine with (fixed) transition function 6 = 60.

A computer is finite -input if IXI < co and finite -state if

IQI < co. Note that even in case a computer is both finite-input and

finite-state, it is not finitely specifiable unless its structure A is finitely

specifiable. However, in the subsequent application of this model to

reliability analysis, all computers (both fault-free and faulty) of

concern in the analysis will indeed be finitely specifiable.

The most general view of computer behavior is that of "string

manipulation. " Beginning in some initial state q0' determined by the

program to be executed and by stored data, C receives an input sequence

(string) of symbols a0a .. an_ 1 where a i E X (i = 0, 1,...,n-1) is the



input received at time i. In response to this input sequence,. the

computer will pass through a sequence (trajectory) of states q0ql .. q n

where qi EQ (i = 0,1,... ,n) is the state of C at time i. Thus the

"state behavior" of C may be viewed as a function from the set X* of

all finite-length sequences of input symbols (including the null sequence

A) into the set Q+ of all finite -length sequences of states. More precisely,

if C = (X, Q, A) and q E Q, the state -behavior of C in q is a function

a : X* Q+ defined inductively as follows:

i) a q(A) = q, for all q E Q, and (3.2)

ii) a q(xa)= a q(X)6i(q', a)

where i = lg(x) (the length of x) and q' is the final state of the trajectory

a q(x), for all q e Q, x E X* and a E X. It is easy to verify that this

formal notion of state-behavior captures the intuitive notion discussed

above. Note that a maps input sequences of length n into state

trajectories of length n + 1.

Having established the concepts of "computer" and "state-behavior,"

we adopt a concept of "computation" that is somewhat more general

than usually considered. Since computational errors may be due to

faulty initial states or erroneous input symbols as well as to faulty

computers, we regard computation as consisting of three things: an

initial state q, an input sequence x and a state sequence y. More

precisely a computation (over X and Q) is a triple (q, x, y) where q E Q,

x E X* and y Q+ such that lg(y) = lg(x) + 1. Accordingly, q, x, and y
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are referred to as the initial state, input sequence and state trajectory

(respectively) of the computation. Relative to a particular computer

C, a computation of C is a computation of the form (q, x, a q(x)). The

fundamental question of deciding whether a computer is behaving

within specified tolerances will be based on the nature of such computa-

tions. However, even more basic than the notion of a computational

error is the concept of a "fault, " that is, a transient or permanent

change in structure that may, in turn, cause errors.

Assuming a familiarity with the concepts of a "representation

scheme" and a "system with faults" (see [ 5], [6]), the specification

class c and realization class ~R that we choose in this case is the

class of all computers (as defined above), that is, both 6 and i( are

equal to the class

S= {C I is a computer}

Moreover, we will restrict our attention to faults that occur during

the use of a computer (as opposed to faults that occur during the design

process) and so, in the representation scheme ( , , p),

P is taken to be the identity function. Accordingly a computer with

faults is a system

(C, F, )

where C E F is a set of potential faults of C and y: F ->

where, if f E F, <p(f) is the computer that results from fault f.
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<p(f) will alternatively be denoted C . One should be careful not to

interpret a "fault" f as some single physical failure that occurs in

the underlying system. Instead it should be interpreted as an entire

sequence of physical failures that could occur during the utilization

of the system. That part of a fault which changes the structure of

a system at some particular instant of time, say time i, will be

referred to as a "fault at time i" and will be more precisely defined

in a moment.

Given the general concept of a computer with faults, let us now

introduce certain restrictions that bring the concept closer to reality

and result in a model that can be used for reliability analysis. If

(C, F, qp) is a computer with faults it will be assumed that the fault-

free specification C is time-invariant (see condition (3. 1)). This is

not unreasonable since many physical systems and, in particular,

most computing systems can be represented as time -invariant systems

as long as there are no structural changes due to physical failures.

Suppose now that a physical failure occurs where the failure may be

transient, permanent, or a combination of the two, that is, a permanent

physical failure that has a transient component while the permanent

change is.taking place. Such physical failures can be represented by

(formal) faults as follows. If C = (X, Q, A) is a computer, a fault of C

(at time i) is a triple (T, 7T, i) where
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T: Q X X -> Q, the transient component,

7: Q x X --> Q, the permanent component,

i is a nonnegative integer, the time of occurrence.

The interpretation of (7, r, 1) is a physical failure- that occurs between

time i and time i + 1. 7 is the transition function that the failing system

exhibits while the failure is taking place and 7T is the transition function

that the system exhibits after the failure has taken place. Thus, if

f = (T, I, i) is a fault of computer C = (X, Q,A), the result of f is the

f f f fff.
computer C =(X, Q, f) where, if = ( 0, 61, ,.. .)then

6. if 0 < j <i

= j T if j = i (3.3)
7T ifj > i.

If, in the result of f = (T, T, i), there is no permanent change in struc -

ture, that is, 7T = 6. then f is a transient fault (at time i). A fault
1-1

(77, T, i) which represents no change whatsoever, that is, = 6i_-1

and T = 6i ,  is referred to as a null or improper fault (at time i).

Finally, as discussed earlier, we want the general concept of a "fault"

to include the representation of a succession of physical failures that

occur during the utilization of the system. Thus, in general, a

(multiple) fault of C is a sequence

f = (fi ,f. ,.. ,f. )
'i 2 k
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where i < i <... < i and f. is a fault of C at time i.. The
1 2 k 1.

corresponding result of f is an immediate generalization of definition

(3.3).

To summarize, then, the computers with faults that we shall

consider are of the form (C, F,p) where C is a time-invariant computer,

F is a set of faults of C (including at least one null fault), and

p: F ' where <p(f) is equal to the result of f (as defined above).

To illustrate the concepts developed above, let us consider a

trivial example. (It must be emphasized that this and future examples

are not intended to illustrate the full power of the formalism. They

are simply given as an aid to the intuitive understanding of the defini-

tions and results.)

Consider a TMR configuration

C1 1

2 4
~4 C ' Voter

S3

where each module C. has a (fault-free) transition function

T: Q X - Q where X = Q= {0, 1}. Then the fault-free TMR confiration

is represented by a computer

C = ({0,11,Q,A)
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where

Q = ((ql,q 2' 9 3' q4)lqi (, 1}}

with q 1, q2 and q3 representing the states of modules 1, 2 and 3

(respectively) and q4 representing the value of the voter output.

The transition structure

A = (50, 61 2...

is given by a fixed function 6 = 6. for all i, where

6((ql, q2 , q3 , q4 ), q) = (q', q, 3,(q', q2, q))

with qi = (qi, a) and i equal to the majority function (realized by the

voter).

Suppose now that at time 2 there is a transient struck-at-one failure

at the output of module 1 and at time 4 there is a permanent stuck-at-

zero failure at the output of module 3. Then this succession of

failures is represented by the (multiple) fault

f = (f2'f 4 )

where f2 is the fault at time 2 and f4 is the fault at time 4. More

specifically, f2 is the fault

(72', 2' 2)
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where (letting q =(qi, a)):

2((q1 , q2 , q 3'q 4 ), a) = (1, q~, (1, q, q))

and

7r 6.
2 =

f4 is the fault

(74' 7 4)

where:

4((q, q 2 , q 3 , q 4 ), a) = (q' , 0, p(' 1 , q , 0))

and

14 =T74

The result of the fault f is the computer C = ({0, 1}, Q, Af )

where

6 if 0 < j < 2

72 if j = 2

6 = if j = 3

T4 if j = 4

T4 if j > 4.
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3. 1. 3 Tolerance Relations and Erroneous Computations. Let us

now consider the effects of faults on computer behavior, i. e., the compu-

tational errors that may be caused by faults. Recall that, in general,

a computation (over X and Q) is a triple (q, x, y) where q is the initial

state, x is the input sequence and y is the state trajectory of the

computation. What we seek is a basis for comparing computations

to determine whether an actual computation (q, x, y) is within "tolerance"

of the desired computation (q',x',y'). More formally, if U is the

class of all computations (over X and Q), a tolerance relation (for

computations) is a relation T on the set U such that T is reflexive.

If (u, u') e T we will write uTu' with the interpretation that, from the

user's point of view, actual computation u is within tolerance of

desired computation u'. The reflexive condition says simply that

every computation is within tolerance of itself, which is certainly a

reasonable requirement. Accordingly the strongest tolerance rela-

tion is the relation of equality; the weakest is the relation T = Ux U

where every computation is within tolerance of every other computation.

The latter says that anything the computer does is acceptable and

therefore represents a theoretical extreme as opposed to a practical

one.

In specifying a tolerance relation, one is able to specify toler-

able changes in initial state or tolerable changes in input as well as

tolerable changes in state trajectory. However, if a system is assumed
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to be free of initialization and input faults, it is convenient to consider

tolerance relations T that only permit changes in the state trajectory

of a computation. More precisely, if u, u' E U where u = (q, x,y) and

u' = (q', x', y') then T satisfies the condition:

uTu' implies q = q' and x = x' (3. 4)

If a tolerance relation T is so restricted, it follows that whenever u

is not in tolerance of u', the state trajectories of u and u' must differ.

During the current reporting period we have confined our attention to

tolerance relations of this type and it will be assumed that condition

(3.4) is satisfied, unless otherwise qualified.

Suppose now that (C, F, cp) is a computer with faults and a specified

tolerance relation is being used to determine the computational integrity

of computers that result from faults. In particular, suppose f E F

and u is a computation of the faulty computer C f , that is, for some

q E Q and x E X*,

f
u = (q, x, a (x))q

(a is the state-behavior of Cf in q; see (3. 2).) Since the desired
q

computation is the computation performed by the fault-free computer

(for the same q and x), that is, the computation

u' = (q,x, a (x))
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it is reasonable to regard u as "erroneous" if u is not within tolerance

of u'. More precisely, if T is a tolerance relation and f E F we have:

Definition: A computation u of Cf is T-erroneous if u7(q,x, a (x))

where q and x are the initial state and input sequence of u. Other-

wise u is T-error-free.

When the tolerance relation is understood,we will drop the reference

to T and refer to u as simply "erroneous" or, in the opposite case,

"error-free. " We will also say that a T-erroneous computation of

Cf is caused by f. Finally, if f can cause no T-erroneous computations

then f is T-tolerated.

It should be noted that the concept of a T-erroneous computation

can capture the notion of an internal error as well as an input-output

error. To illustrate, consider the TMR example used earlier and

suppose T is the relation of equality (identity) on U, that is

uTu' if u = u'.

Then the fault f = (f2 ' f4 ), considered in the earlier example, can

cause T-erroneous computations even though f cannot cause input-

output errors (assuming the modules are properly initialized). To

be more specific, let us suppose the module transition function 6

is given by:
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(q,a) T(q, a)

(0,0) 0

(0,1) 1

(1, 0) 1

(1, 1) 0

Then, for example, if q = (0, 0, 0, 0) and x = 101 then

a f(x) = (0, 0, 0, 0) (1, 1, 1, 1) (1, 1, 1, 1) (1, 0, 0, 0)
q

since the transition function at time 2 is ! 2 . On the other hand

a (x) = (0, 0, 0, 0)(1, 1, 1, 1)(1, 1, 1, 1)(0, 0, 0, 0).

f
Thus the computations u = (q, x, a q(x)) and u' = (q, x, a (x)) are not

equal, that is, u'tu' and hence u is a T-erroneous computation.

To continue the example, suppose T' is a second tolerance

relation which requires only that values on the output line (coordinate

4) be what they should be. More precisely, (q,x, y)T'(q,x, y') if y and

y' have the same length, say n, and the it h state of y has the same 4 th

coordinate as the it h state of y', i = 0, 1, ... ,n-1. Given that T' is

the tolerance relation of interest, it can be shown that the fault

f = (f2 ' f4 ) does not cause any T'-erroneous computations (provided

all module states are the same when the computation begins). In

other words, although f can cause internal errors (according to

tolerance relation T), it can cause no input-output errors (according
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to tolerance relation T').

In general, any analysis of computing system reliability must

be based on some underlying criteria that defines "acceptable" or

"tolerable" behavior. Since a tolerance relation is simply a formal

statement of such criteria, it too is fundamental to reliability

analysis. In many cases, the tolerance relation that underlies the

analysis is not stated explicitly but is nevertheless easily inferred.

In other cases, however, it is extremely difficult to judge what the

analyst regards as tolerable behavior and, consequently, the results

of the analysis are difficult to interpret.

When the underlying tolerance relation (or some equivalent

thereof) is not stated explicitly, results of the analysis can also

be misleading. For example, in a paper by Mathur ([ 7], 1971), the

problem of optimally allocating 7 identical modules is considered

with the conclusion that a standby replacement system (i. e., 1 active

unit and 6 unpowered spares) is "... clearly... superior to hybrid

systems... " (i. e., (3, 4) or (4 2), with voter). What is ignored is

the fact that different tolerance relations are used to calculate the

respective reliabilities. With a single active unit an error yields an

incorrect output, while with the hybrid system an error results in an

incorrect internal state, but the output is still correct. The importance

of this distinction is, of course, application dependent, but certainly

the distinction must be kept in mind.
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Based on a survey of reliability measures and analysis techniques

that are currently being used, it is our firm belief that the appropriate

starting point for reliability analysis is a precise definition of

what constitutes "acceptable" or "tolerable" behavior. Moreover, the

definition should be general enough to permit the specification of

relatively complex tolerance criteria involving multivariable descrip-

tions of performance, various levels of degraded performance, limits

on the duration of time and/or number of times that performance is

below a given level, and so forth, It is these considerations that

have motivated our development up to this point, culminating in the

concept of a "tolerance relation" which permits this kind of precise

specification. Accordingly, the subsequent investigation of reliability

analysis is based on the assumptions that the computer to be analyzed

is formally described as a computer with faults and tolerable behavior

is formally described by a tolerance relation defined on computations.

3. 1.4 Reliability Measures. In analyzing the reliability of

a computing system, one must first specify just what is meant by the

term "reliability" since the word has taken on a variety of special

meanings. Generally, by reliability we will mean a sequence of one

or more numbers that reflect the ability to rely on a system. In

particular, if the system is a computer with faults, the numbers

reflect the ability to rely on the computations of the computer.

Accordingly, a reliability measure is a function from systems into

sequences of numbers whose value, for a particular system, is the
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reliability of that system. Thus, in the context of this investigation,

a reliability measure is a function from the class of all computers

with faults into some Cartesian product of sets of numbers. In many

cases, the Cartesian product is one-dimensional, that is, the value of

the measure is a single number. If the product has more than one

dimension, the measure will be referred to as multi-dimensional.

When used in the above sense, reliability has a very general

meaning and includes such concepts as mean-time-to-failure, availa-

bility, recoverability, effectiveness, etc. as well as the usual strict

definitions of the term that are based on some concept of successful

(adequate, acceptable, tolerable) operation. Thus the term "reliability,"

as used above, is synonymous with the term "utility" as used in the

statement of the augmented objectives (see Section 1). Unfortunately,

neither term is especially well-suited for the meaning given here since

reliability is often given a more restricted meaning and utility a more

general meaning.

To begin our investigation of reliability measures for computers

with faults, let us consider first how the usual, more restricted

meaning of "reliability" translates into the terms we have developed.

As defined, for example, by the Radio-Electronics-Television Associa-

tion in 1955, reliability is the "probability of a device performing its

purpose adequately for the period of time intended under the operating

conditions encountered. " Translating into our terms, this
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becomes the "probability that a computer with faults behaves within

tolerance for some specified utilization period. " More precisely,

if C = (C, F,yp) is a computer with faults, T is a tolerance relation

on computations, and [0, t] = {0, 1,..., t} is the utilization period

then

Definition: The (strict) reliability R(C) of C is the probability that

the computation of C in the interval [0, t] is T-error-free.

The reliability measure, in this case, is the function R from

computers with faults into the real interval [0, 1], where R(C) is the

reliability of C.

Let us now examine what suffices to compute the values of this

measure. Conceptually, for each computer with faults C = (C, F, o),

we must determine an underlying probability space C that will

suffice to determine the reliability R(C). More specifically, if tC =

(S, 8, P), where S is the sample space, 8 is the event space (a

a-algebra of subsets of S) and P is the probability measure, we must

determine choices of S, 8, and P that will determine R(C). Beginning

with the sample space S, elements here must represent elementary

outcomes, namely, computations of C. Since a computation of C is

actually a computation of C for some f E F, it suffices to let S be the

set

S = QxXx F (3.5)
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where X t = {x Ix e X* and lg(x) = t}. The interpretation of a sample

(q, x, f) is that the initial state is q, the input sequence is x and the

(multiple) fault that occurred is f. Thus, given a sample (q, x, f)

the corresponding computation (in the interval [0, t] ) is the computa-

tion

(q, x, af (x)).
q

The event space S must be chosen so that it contains the event

E = {(q, x,f) l (q, x, a (x)) is T-error-free} (3.6)
q

and permits the definition of a probability measure P: -> [0, 1]

(with the usual interpretation that, for all D E 5 P(D) is the

probability that the outcome is in the event D). It follows then that

C suffices to determine R(C) since, if E is the event given above,

then

R(C) = P(E) (3.7)

(Technically speaking, the above equation should be regarded as the

definition of R(C), for it is here that we give precise meaning to

the word "probability. ")

Upon closer examination of this reliability measure, the reason

for the careful development of the preceding sections should now be

clear. We note first that the underlying probability measure P is
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defined on initial states, input sequences and faults, and not :simply

faults alone. This permits initial-state -dependent or data-dependent

performance to be accounted for in the reliability analysis. Most

conventional approaches, on the other hand, account only for the

probabilistic nature of faults, thereby ignoring effects of initialization

and data.

Second, we note that what constitutes "success" (as the term

is usually employed in strict definitions of reliability) is precisely

specified by a tolerance relation T. Moreover, the tolerance relation

is not restricted to instantaneous "snapshots" of structure or behavior

but, instead, is defined on complete computations. This permits the

past history of the computation and, in particular, the present state

of the computer to be accounted for in the judgment as to whether

performance is successful.

To illustrate these remarks, let us suppose the "computer" to

be analyzed is a simple two-state device, namely, a trigger flip-flop

(alternately referred to as a T-flip-flop or mod-2 counter). The

fault-free representation of this device is the computer

C = ({0, 1}, {0, 1}, 6) where 6 is given by the table:

(q, a) 6(q, a)

(0,0) 0

(0, 1) 1

(1,0) 1

(1, 1) 0
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that is, C stays in the same state if the input is 0 and changes

state if the input is 1. Suppose further that the only device failures

having an appreciable probability of occurrence are stuck-at failures

at the output where the hazard rate (failure rate) is a constant X. Then,

by the usual method of reliability analysis (see [8 ], for example),

the reliability R(C) is given by the equation:

R(C) = eXt (3.8)

where [0, t] is the utilization period. (The notation R is used to

distinguish this measure from the measure R defined above. ) What

is being assumed here is that the flip-flop fails as soon as a stuck-at

failure occurs. This certainly simplifies the measure but, at the

same time, ignores the effects of initial state, input, the transition

function and, most importantly, what the user regards as tolerable

behavior.

Let us now examine how our more refined measure R can account

for effects ignored by R. In particular, let us suppose that the

user is interested in the value of the output only when the computation

terminates. In other words, the tolerance relation is the relation T

where (q, x, y)T(q,x, y') if the final state of trajectory y is equal to

the final state of trajectory y'. If, further, we let F be the set of all

faults of C that represent (permanent) stuck-at failures and f F, it

follows that the computation (q, x, a (x)) is T-error-free if and only if
q

the final state of a (x) is equal to the final state of a (x). Accordingly
q q
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the event E, corresponding to all error-free computations (see

(3. 6)), is the event

E = {(q, x, f) IFinal state of a f(x) = Final state of a (x)}.q q

It remains then to determine the probability of E which, by

(3. 7) gives the reliability R(C). This is easily done if we consider

the following events (subsets of {0, 1} x {0, 1}t x F):

N = {(q,x,f)[f is null or f= (7, ,i) where i>t }

A0 = {(q,x,f)Iq = 0}

A 1 = {(q,x,f)fq = 1}

B0 = {(q,x,f)[Parity(x) = 0}

B 1 = {(q,x,f)jParity(x) = 1}

C O = {(q,x, f) f = (, T,i) where i <t andT = 7T = 0

C 1 = {(q,x,f) f = (7, ,i) where i < t and 7 = 7T = 1

(a0 and oa denote the functions "constant 0" and "constant 1. ")

These events can be paraphrased as follows:

N: No fault occurs in the interval [0, t).

A.: The initial state is i.
1

B.: The number of 1's in the input sequence is equal to i (mod 2).
1

C.: A stuck-at-i fault occurs in the interval [ 0, t).
1

We note first that N c E since, here, no fault occurs before the end of

the utilization period. To determine other events in E, consider, for

example, the event D = AoB 1 C 1 (the intersection of these three events).

If (q, x, f) e D, since f is a stuck-at-1 fault that occurs during the

utilization period, the final state of a (x) is equal to 1. But q = 0 andq
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and the parity of x is odd, so the final state of a q(x) is also equal to

1. In other words, such computations are T-error-free and we

condlude that D C E. By similar reasoning for other compound events,

it can be established that:

E = N UAoBoCO UA 1 B 1C0 UA 1 BOC 1 UAoB 1 C 1 .

Since the events on the right-hand side are mutually exclusive and

assuming the events Ai, B i and C i are independent (a reasonable

assumption in this case) we have:

P(E) = P(N) + [P(A0 )P(B 0 ) + P(A )P(B 1)]P(C0 )

+ [P(A1)P(BO) + P(AO)P(B 1 )]P(C 1 )

Here, under the earlier assumption regarding failure rates,

P(N) = e

and, since C0 UC1 N,

P(C0) + P(C 1) = 1 - e

If we assume further that all sequences in {0, 1}t are equally likely

and the initial state is always 0 then

P(AO) = 1 P(BO) = 0.5

P(A ) = 0 P(BI) = 0.5.
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Substituting these values in the above expression, we obtain the

reliability of C, that is,

R(C) = P(E) = e + 0. 5(1 - e (3.9)

Comparing (3. 9) with (3. 8), we see that the reliability of the

flip-flop is greater when error-free behavior is judged according to

the tolerance relation T. Thus, for example, if the failure rate X is

10 - 4 failures/hour and the utilization period is 1000 hours then,

according to (3. 8):

-0. 1
R(C) = e = 0. 90 .

On the other hand, applying (3. 9):

R(C) = e + 0. 5(1 - e ) = 0.95.

If some other set of assumptions were made regarding the probabilistic

nature of C (i.e., the probability measure P), the extent of the improve-

ment might differ but, in no case, would R(C) be less than R (C).

3.1.5 Topics for Further Investigation. The ability to define

a reliability measure and apply it in the manner illustrated above

demonstrates both the feasibility and the potential of this approach

to reliability analysis. Due to the generality of the framework, there

are relatively few limitations on the types of systems, faults, tolerance

relations, and reliability measures that are describable within the

formalism. However, to say that something is describable (in the
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sense that a description exists) is usually not enough; it must also

be the case that an object remains describable when the-description

process is subject to constraints on money, manpower, time and space.

If computers are used in the description process (which will be

mandatory in many cases), time includes computer run-time and

space includes computer storage. Therefore, in parallel with our

further investigation of appropriate tolerance relations and reliability

measures we intend to investigate various means of simplifying their

description. If the price paid for simplification is a less accurate

description, the effects of such inaccuracies will also be investigated.

These remarks regarding the economics of the description

process apply as well to the process of evaluating the reliability of

a computer according to some reliability measure, given that the

computer (with faults) and the measure have already been described.

One possible means of simplifying a complex evaluation process would

be to decompose it via a decomposition of the measure. In other words,

attempt to define submeasures which can be more easily evaluated

and, in turn, combined to yield the value of the measure. We believe

this approach deserves investigation and we intend to actively pursue

it during the next reporting period. In cases where the calculation

of exact values is infeasible, due to the computational complexity of the

algorithm or to insufficient knowledge of the underlying probability

measure, methods of calculating approximate values will be investigated.
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If the measure is decomposed, as suggested above, such methods

could also be used to calculate the values of submeasures.

Aside from these questions regarding how measures are des-

cribed and how they are evaluated, a more fundamental question is

the determination of just what should be measured. The strict

reliability measure discussed in the previous section (or, more

properly, the class of strict reliability measures, since the tolerance

relation T can be varied) is but one measure among many that

could be applied. In viewing what others have accomplished'

in this regard, we believe that "recoverability, " or what

is usually referred to as "coverage" [9], deserves much more study

with regard to its measure. This includes all the aspects we have

discussed for reliability measures in general, that is, a precise

definition of what is meant by recoverability (as defined on computers

with faults), economic descriptions of whatever objects the recover-

ability measure is based on, and an efficient means of evaluating the

recoverability of a given computer.

In support of the need for such an investigation, Bouricius,

et al. [9] state that "... coverage... is the single most important para-

meter in high-reliability system design. Changing the coverage from 1

to about 0. 98 can result in orders of magnitude degredation in system

mission time." Also, we have programmed several reliability functions

involving a coverageparameter, and have observed, through interactive
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terminal sessions, that coverage is indeed a critical parameter.

Moreover, the relative importance of coverage increases with increas-

ing system reliability.

As a consequence of this assessment, just prior to the end of

the present reporting period we initiated an investigation of recoverability

measures and their evaluation. The initial step has been to explore

just what is meant by "recovery" and "time of recovery" in the

context of a computer with faults and relative to some specified toler-

ance relation. Once these questions are settled, precise formulation

of a recovery measure will begin and the investigation will proceed

as outlined above.

3. 2 On-line Diagnosis

3. 2. 1 Background. In many applications, especially those in

which a computer is being used to control some process in real-

time, (e. g. , telephone switching, flight control of an aircraft or

spacecraft, etc. ) it is desirable to constantly monitor the performance

of the system, as it is being used, to determine whether the actual

system is within tolerance of the intended system. Informally, by

"on-line diagnosis" we mean a monitoring process of this type where

the extent of the diagnosis depends on the meaning of "within tolerance. "

Thus, for example, if being within tolerance means having the same

input-output behavior, then on-line diagnosis becomes on-line

"detection. " In the special case where the implementation of on-line
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diagnosis is completely internal to the system being diagnosed, it

is referred to as "self diagnosis" or "self checking. "

The incorporation of special hardware for the purpose of on-line

diagnosis dates way back to the relay computers developed by Bell

Laboratories in the early-to-mid 1940's, Where biquinary codes

were used to dynamically check the operation of the computer [10].

A more general look at codes for checking logical operations was

first taken by Peterson and Rabin in 1959 [11] where they showed

that combinational circuits can vary greatly in their inherent on-line

diagnosability. The use of coding techniques in the design of self-

checking circuits was further explored by Carter and Schneider in

1968 [12] and by Anderson in 1971 [13 ]. In addition, a number of

special on-line diagnosis methods have been considered which apply

to specific hardware subsystems such as adders, counters, etc.

(see [14 ], for example).

A theoretical study of on-line fault diagnosis was initiated under

NASA Grant NGR23-005-463. The motivation for this study was the

increasing use of computers in real-time applications where (i) erron-

eous operation can result in the loss of human life and/or large sums

of money and i) interruptions in the operation, for the purpose of

off-line diagnosis, are intolerable. In particular, our discussions

with NASA-Langley regarding such applications were influential in

precipitating this study.
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The initial problem considered in our study was the formulation

of an appropriate class of system models (i. e., a class of "systems

with faults") that could serve as a basis for the theoretical study of

on-line diagnosis. This effort was motivated by the observations

that (i) conventional models of time-invariant systems (e. g., sequential

machines) are inadequate since they cannot represent the dynamics

of a system as faults occur and (ii) many systems are originally

designed with an explicit reset mechanism (e. g., the clear button on

an adding machine) or must have a reset capability due to their

intended implementation. These observations led to the formulation

of a class of resettable discrete-time systems which adequately

represent the structure and behavior of both "fault-free" and "faulty"

systems in an on-line diagnosis environment. Given a (resettable,

discrete-time) system S, a fault f of S is represented by a triple

f = (S',7, 0) with the interpretation that S is transformed into system

S' at time 7 with transient state behavior 0. The result of f is taken

to be the system S which looks like S up to time 7 and like S' there-

after.

Once such systems were defined, the next problem considered

Was the formulation of notions of fault tolerance, error, diagnosability,

realization, etc. that have a meaningful interpretation in the context

of on-line diagnosis. To summarize briefly, if S is a system and f

is a fault of S, we say that f is tolerated if the resulting faulty system
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S is able to mimic some desired behavior as specified by a reduced

system S. Otherwise, f causes errors (i. e., erroneous outputs)

for some initial conditions and input sequences. Our notion of on-line

diagnosis involves an external detector D (assumed to be fault-free)

and a maximum delay k within which any error caused by a fault must

be detected. More specifically, a system S with faults F is (D, k)-

diagnosable if, for all f in F,

(i) D responds negatively if S is fault -free,

and

(ii) D responds positively within k time steps of the first

occurrence of an error caused by f.

After the above concepts were made precise, certain fundamental

questions were posed and their investigation was initiated. The

research outlined above was first described in the technical report

"On-line Diagnosis of Sequential Systems" [15].

3. 2. 2 Recent Activity. During this reporting period we have

c ontinued our investigation of on-line diagnosis and we have obtained

results which have substantially increased our knowledge of the subject.

The activity during this period has focused on the diagnosis of two

sets of faults; namely, the set of "unrestricted faults" and the set

of "unrestricted component faults. "

The set U of unrestricted faults of a system is defined to be

simply the set of all faults of that system. Aside from representing
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a "worst-case" fault environment, there are certain practical reasons

for considering U, at least at the outset. In particular, as the scale

of integrated circuit technology becomes larger, it becomes more

difficult to postulate a suitably restricted class of faults such as the

class of all "stuck-at" faults. Moreover, although other failure

models such as bridging failures have been proposed and studied

(see [16] and [17] for example), little is known about the diagnosis

of such failures. In addition, intermittent and multiple failures are

also possible and are even more difficult to model. Finally, for a

given failure it may be impossible to determine the 0 function of the

fault caused by this failure. Thus fault sets which do not restrict the

transient state behavior 0 are advantageous.

Given the background of techniques that have been proposed and,

in many cases, used to improve the on-line diagnosability of a system,

the following question arises quite naturally. With regard to any

technique that might be employed, how complex must the diagnosing

system be as compared to the system being diagnosed, if the latter

is to be on-line diagnosable for some prescribed set of faults? To

answer this question, one must, of course, designate the complexity

measure. As a measure of system complexity, we have chosen the

number of reachable internal states. This measure reflects the memory

capacity of a system and, without further restrictions on system struc -

ture, it's the only measure of structural complexity that has a reason-
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able interpretation. Here we have shown that if a system is on-line

diagnosable for the unrestricted set of faults then the detector is at

least as complex as the specification. Moreover, this result holds

even when the allowed time delay for error detection is arbitrarily

large.

One means of diagnosing the unrestricted faults of a system is

to use a detector which consists of a duplicate of the system being

diagnosed and a matching circuit which can dynamically compare the

operation of the system with its duplicate. For systems which have

(delayed) inverses, that is, systems which are information lossless,

an alternative means of performing unrestricted fault diagnosis is

the use of a loop check. Our research here has established that an

inverse system can always be used for on-line unrestricted diagnosis

if it too is information lossless. Although the lossless condition is

sufficient, it is shown further that there exist systems for which a

lossy inverse can also be used for on-line unrestricted fault diagnosis.

Since not every system has an inverse, let alone one which can

be used for unrestricted fault diagnosis, it is not always possible to

apply this technique directly. However, we have shown that every

system has a realization to which this scheme can be successfully

applied.

A detailed discussion of the above results has been documented

in a paper entitled "On-line Diagnosis of Unrestricted Faults" [18]

which has been submitted for publication to the IEEE Transactions on

Computers.
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The on-line diagnosis of systems, which are structurally

decomposed and are represented as a network of smaller systems,

has also been investigated. The fault set considered here is the set

of unrestricted component faults; namely, the set of faults which only

affect one component system of the network. A characterization of

networks which can be diagnosed using a combinational detector has

been obtained and it is shown that any network can be made diagnosable

in the above sense by the addition of one component with a complexity

as great as the most complex component in the network. In addition,

a lower bound has been obtained on the complexity of any component,

the addition of which is sufficient to make a particular network

combinationally diagnosable.

A detailed discussion of all of the work to date on on-line

diagnosis has recently been documented in the technical report

"On-line Diagnosis of Sequential Systems: II" [19]. This report includes

modifications of material covered in an earlier report ("On-line

Diagnosis of Sequential Systems" [15]), and rigorously establishes

the results reviewed above.

3. 2. 3 Topics for Further Investigation. Although much progress

has been made towards achieving a thorough understanding of on-line

diagnosis, many possibilities for further investigation remain. Except

for research on the diagnosis of networks of systems, our investiga-

tion has been dealing with totally unstructured systems. Such an
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approach is well suited to the development of formal concepts

involved in the theory of on-line diagnosis. It is also well suited to

the investigation of these concepts, provided that the faults in

question do not depend on a more refined knowledge of structure as,

for example, when the faults are unrestricted. On the other hand,

many interesting and important questions are better studied in a more

structured environment. One reason for this is that, with a structured

system, we can consider the causes of faults. For example, given

an unstructured system it makes no sense to speak of the set of

faults caused by component failures of a certain type or by bridging

failures. However, given a structured representation of a system

(e. g., a circuit diagram) we can discuss these and other types of

failures (causes) and determine the resulting faults (effects).

There are many different structural levels that could prove

useful to a further investigation into the theory of on-line diagnosis.

Two levels which we believe will be important are: the binary state-

assigned level and the logical circuit level. These levels and the

basis for their potential usefulness are explained below.

A machine M is said to be binary state-assigned if Q = {0, 1}n

for some positive integer n. Given such a machine we can speak of

stuck-at-0 and stuck-at-1 and other types of memory failure. The

faults corresponding to these failures can be enumerated and compari-

sons can be made between various schemes for diagnosing these faults.
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Memory faults have been studied before in other contexts (see [20]

and [21] for example) and they are an important class of faults for

a number of reasons. As we have seen, only a limited amount of

structure is needed to discuss them. Thus memory faults can be

analyzed before the circuit design of the machine is complete. Also,

it is memory which distinguishes truly sequential systems from

purely combinational (one-state) systems. Combinational systems

are inherently easier than sequential systems to analyze and a number

of techniques for the on-line diagnosis of such systems are known

(see [14] and [22] for example).

A system possesses structure at the logical circuit level if a

representation of the system is given in terms of a logical circuit

composed of primitive logical elements. These may be of the

AND-OR variety, threshold elements, or any similar elements of a

"building block" nature depending upon the technology being considered.

This level is useful for investigating failures in the primitive components.

Further work could also be performed at the network level of

structural detail. At this level one could study the problem of imple-

menting on-line diagnosis on a whole computer whereas with the other

levels the emphasis would be on diagnosing one module. Note that in

our definition of diagnosis the detector is not constrained to give simply

a yes-no response. It could also provide extra information for use

in automatic fault location. Thus at this level the problem of which
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subsystems must be explicitly observed by the detector to achieve

some desired fault location property could be studied.

One problem that requires extension of our present model

(at any structural level) is the problem of automatic reconfiguration

of the system under the control of the detector. To study this

problem, the model used would have to allow for feedback from the

detector to the system it is observing. The question of how such an

extension should be made is an intersting one and, if answered

satisfactorily, the resulting model could serve as a basis for a sys-

tematic investigation of reconfiguration techniques.
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